NETWORKING RESEARCH CHALLENGES IN MULTI-UAV SYSTEMS

Hermann Hellwagner
Information Technology
https://dronehub.tk/

Christian Bettstetter
Networked and Embedded Systems
{firstname.lastname}@aau.at
Where Do We Come From?

Pertinent Research:
8 years of research on technology and deployment of networks of multiple unmanned aerial vehicles (multi-UAV systems), in particular for emergency response operations.

Representative Projects and Objectives:
- **Collaborative Microdrones (cDrones)**
 - Flight formation and networked control
 - Cooperative aerial imaging to create overview pictures (mosaics) of disaster-affected areas
- **Self-organizing Intelligent Networks of UAVs (SINUS)**
 - Distributed coordination of UAV movements and task execution
 - Reliable aerial networking for robust multimedia streaming
PORTFOLIO IN AERIAL ROBOTICS

Research Topics:
- Autonomous navigation and coordination
- Mission and path planning
- Image processing
- Wireless (multimedia) comm.
- Human-UAV interaction

Application Areas:
- Search and rescue
- Aerial surveillance
- Precision agriculture
- Delivery of goods
1. Communication requirements are manifold
COMM. REQUIREMENTS / TRAFFIC TYPES

Scenario:

3D mobility
Infrastructure and mesh networking
Reliability and robustness against interference
Mix of traffic types, payload and control, incl. low latency, high data rates
Precise time sync and localization

Traffic Type
- UAV control
- Vision-based navigation
- Multimedia applications

Requirements
- Low latency & high reliability
- High data rate & low latency
- High data rate & QoS support
1. Communication requirements are manifold

2. Communication network of a multi-UAV system and their other components are highly interdependent
INTERDEPENDENCE OF (MULTI-)UAV COMPONENTS
FINDINGS w.r.t. NETWORKING AND COMMUNICATION (III)

1. Communication requirements are manifold

2. Communication networks of a multi-UAV system and their other components are highly interdependent

3. Off-the-shelf IEEE 802.11 WLAN is not well suited for 3D communication and agile network nodes (UAVs)
SAMPLE THROUGHPUT PERFORMANCE RESULT

IEEE 802.11n and 11ac over outdoor drone-to-ground link

Special antenna setup

Transmit power 10 dBm = 10 mW
UDP (User Datagram Protocol) traffic

Throughput in Mbit/s

Distance in m
Findings w.r.t. Networking and Communication (IV)

1. Communication requirements are manifold

2. Communication networks of a multi-UAV system and their other components are highly interdependent

3. Off-the-shelf IEEE 802.11 WLAN is not well suited for 3D communication and agile network nodes (UAVs)

4. Cooperative relaying or/and specific protocols are needed to support the multi-UAV mission
Wireless Multi-Hop Communications

- UAVs may serve as *relays* for traffic from other UAVs
- UAVs may form a *mesh* network using IEEE 802.11s
- UAVs may exploit *cooperative diversity* to make links more robust
- Large drone network may use *ad-hoc routing* protocols
- Large drone network may use concepts from *delay-tolerant networking* for certain applications

Different approaches for each traffic type possible
1. Communication requirements are manifold

2. Communication networks of a multi-UAV system and their other components are highly interdependent

3. Off-the-shelf IEEE 802.11 WLAN is not well suited for 3D communication and agile network nodes (UAVs)

4. Cooperative relaying or/and specific protocols are needed to support the multi-UAV mission

5. Adaptation of payload data (e.g., pictures) in terms of quality/data rate, to network conditions at hand, helps
EXPERIMENT: ADAPTIVE VIDEO STREAMING

Video packets' queueing delays and video quality …

… *without* video adaptation

… *with* video adaptation

(Current heuristic:
- Downgrade if delay > 0.3 s
- Upgrade if delay < 0.1 s for 250 p.)
WHERE TO GO FROM HERE?

Research Objective:
To make multi-UAV systems fully autonomous

Doctoral Programme:
- *Networked Autonomous Aerial Vehicles (NAV)*
- Faculty: Bettstetter, Hellwagner, Rinner, Weiss
- Funding: ~0.5 M€ granted by AAU, 3 years

Networking Research Challenges …
… partially addressed
NETWORKING RESEARCH CHALLENGES

1. Autonomous, collaborative 3D environment reconstruction and navigation of the UAVs will have to be supported
NETWORKING RESEARCH CHALLENGES

1. Autonomous, collaborative 3D environment reconstruction and navigation of the UAVs will have to be supported

2. Fine-granular temporal synchronization between aerial vehicles will have to be established

3. Ad-hoc multipoint-to-multipoint communication and coordination will be needed
NETWORKING RESEARCH CHALLENGES

1. Autonomous, collaborative 3D environment reconstruction and navigation of the UAVs will have to be supported
2. Fine-granular temporal synchronization between aerial vehicles will have to be established
3. Ad-hoc multipoint-to-multipoint communication and coordination will be needed
4. Security and safety of an autonomous multi-UAV system will become of utmost importance
5. Availability of dedicated spectrum for mission-critical UAV networks will have to be discussed
Why TNC‘17?

Challenging networking research topics

Multi-UAV systems increasingly used for creative businesses, e.g.:
- Picture and movie productions
- Arts performances, e.g., AE Linz, “Drone 100” (Intel)
- Entertainment, e.g., Arrowonics

What if creative persons and artists could easily interact with a massive UAV swarm, e.g., by gestures?
→ New types of aerial shows, fireworks, entertainment
→ New networking research challenges
SELECTED PUBLICATIONS

NETWORKING RESEARCH CHALLENGES IN MULTI-UAV SYSTEMS

Hermann Hellwagner
Information Technology
https://dronehub.tk/

Christian Bettstetter
Networked and Embedded Systems
{firstname.lastname}@aau.at